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The shape of liquid surfaces in regular N-pods in the absence of gravity is considered.
A liquid volume in the vertex of a regular N-pod wets the adjacent faces if the sum
of the liquid’s contact angle γ with the faces and half the dihedral angle α between
adjacent faces is smaller than π/2. A suggestion for why the surface shape in the
wedge approaches its cylindrical shape at infinity exponentially is given. The range of
this exponential decrease is related to the curvature of the meniscus and the angles α
and γ: The decrement of the decrease generally shows a weak dependence on α+ γ,
predominantly depending on the liquid volume. Extremely close to the wetting limit,
when α+ γ approaches π/2, the decrement vanishes. The exponential meniscus shape
leads to a similarity relation and allows small relative liquid volumes in polyhedrons
to be split up into partial volumes ascribed to the corners and others ascribed to
the wedges. The respective relations among volume, curvature, contact angle and
corner geometry are obtained by numerical simulation and the limits of applicability
are discussed. This greatly simplifies the calculation of liquid surfaces in the limit
of small liquid volumes. The results obtained apply to liquid surfaces in a Space
environment, e.g. to metallic melts in crucibles and to propellants and other technical
fluids in tanks and reservoirs, as well as to liquid surfaces on Earth, e.g. to liquids
trapped in polyhedral pores and to liquid foams, provided their characteristic length
is sufficiently small compared to the capillary length.

1. Introduction
Since the advent of microgravity research, the shape of liquid surfaces in different

containers has received increasing attention. Under weightlessness, the shape of liquid
surfaces is no longer determined by gravity pressing the liquid to the bottom, but
solely by the liquid volume, the container shape and the liquid’s contact angle with the
container material. Wetting liquids maximize their wall contact, whereas non-wetting
liquids tend to reduce it. Corners provide a stronger wall contact than wedges or
even faces, such that wetting liquids pile up there. Nevertheless, corners do not fully
dominate wedges: there are situations when the wedges just do not release the liquid
and remain filled however strong the sucking forces might be. This effect has long
been known in materials sciences. The nucleation energy of a melt in corners and
wedges may become negative if the angles between the faces become sufficiently small
(Volmer 1939; Pötschke 1980); Gibbs probably was already aware of that. It allows
premature nucleation to take place in the wedge.

Among the obvious applications of liquid behaviour in containers with different
shape are: on the technical side all questions of liquid transport due to capillary
forces, in particular surface tension tanks and heat pipes; on the scientific side all
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microgravity experiments in materials sciences, life science and fluid dynamics which
involve different fluids; the configuration and drainage of foams made up from
polyhedral segments.

Detailed studies on capillary surfaces in domains with wedges and corners have
been reported only recently. The advance of Space technology has required a close
look at liquid handling under microgravity conditions. In these applications (life
science, fuel systems, heat exchange etc.) partially filled containers with edges or
corners are in common use. Among the microgravity experiments, materials sciences
have played an important role. In the mid 1970s experiments on the solidification
of monotectic alloys under microgravity conditions showed that containers with
edges and corners may strongly affect the final distribution of the two consolu-
tal phases in the solidified material (Ahlborn & Löhberg 1976). In the meantime,
additional microgravity conditions have become available in drop towers, sound-
ing rockets, satellites and Space missions and many more experiments have been
flown.

Another promising field of application is the characterization of the wetting of
porous structures. Materials exhibiting pores of aspect ratios close to unity can be
regarded as structures of coupled polyhedrons of different sizes. If the pores consid-
ered are small, the Bond number is also small, and gravity becomes unimportant.
Under these assumptions, the results presented in the following can also be applied
to porous media. In the limit of low relative filling levels, simple relations charac-
terizing the meniscus curvature can be obtained. These result from using similarity
principles and numerical simulation. This may considerably extend studies by Prin-
cen on wetting and drainage in fibrous structures (Princen 1969a, b, 1970) and by
Mason & Morrow on the menisci in pores of general tubular shape. Considering
the height of rise of liquid menisci in long capillaries of irregular cross-section,
they found excellent correspondence between calculated curvatures and respective
theoretical maximum meniscus elevation and experimental data obtained on the
ground (Mason & Morrow 1984). Additionally, Mason & Morrow (1991) closely
examined the menisci in irregular triangular tubes. They also considered the menisci
in an isolated wedge of infinite extent and discussed the generalized problem of
capillary rise in a capillary of arbitrary cross-section immersed in a liquid reser-
voir. They could not account for closed capillaries or general vessels containing
very small amounts of fluid, where wetting of the bottom has to be considered
and menisci partially wetting the bottom but entirely covering the wedges might
arise.

In the relevant mathematical literature on liquid surfaces in infinite cylinders
(Concus & Finn 1969; Finn 1986 and others), the cross-section of the cylinders is
termed the domain and the wedges of the cylinders are termed corners. Since we are
dealing with physical three-dimensional containers, we do not adopt that terminology.
Instead we keep the physical terminology, i.e. a cube has six faces, eight corners and
twelve wedges; each wedge results from the intersection of two faces and its dihedral
angle equals the angle between the normals of the respective faces. The geometrical
line of intersection of two faces, i.e. the apex of the wedge, is termed the edge.

Let us quite generally consider a wedge k with dihedral angle αk , which is formed
by two faces i and j with contact angles γi and γj , respectively. For a capillary surface
to exhibit a contact line up to the wedge, the normal of the surface must lie on the
cone with angle γi around the normal of face i and on the cone with angle γj around
the normal of face j.

Four different situations can occur.
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(i) The two cones lie outside each other

γi + γj < π − 2αk. (1.1)

A contact line up to the wedge cannot exist. The liquid fully penetrates into the
wedge. In the absence of external forces a stable concave cylindrical meniscus is
formed. The concave shape means a capillary underpressure, which sucks the liquid
into the wedge.

(ii) The two cones intersect, i.e. a capillary surface up to the wedge exists, if

γi + γj > π − 2αk. (1.2)

Alternatively in an infinite wedge, an unstable convex meniscus subject to breakage
can be found. The wavelength of this breakage under the premises of weightlessness
and the absence of other external forces has been calculated by Langbein (1990).
Equation (1.2) is subject to the following restrictions:

(iii) The two cones lie inside each other

|γi − γj | > π − 2αk. (1.3)

This is the case of canthotaxis. The contact line extends up to the wedge where it gets
pinned for a finite interval, in which the normal of the capillary surface turns from γi
to γj + 2αk − π.

(iv) γi + γj > π + 2αk. (1.4)

This is equivalent to (π− γi) + (π− γj) < π− 2αk . The cones with the complementary
contact angles (π−γi) and (π−γj) do not overlap. The complementary fluid penetrates
into the wedge. In the following we will refer to (1.2)–(1.4) in a mutually exclusive
sense, i.e. if (1.2) is said to ‘hold’ then neither (1.3) nor (1.4) will apply.

This behaviour was established mathematically by Concus and Finn (Concus &
Finn 1969; Finn 1986). In the mathematical sense the penetration of liquid into
a wedge according to condition (1.1) or (1.4) represents a discontinuity: there is no
longer a surface over the full cross-section (domain). Physically, the change in pressure
when the liquid penetrates into a wedge is not dramatic: in the infinite wedge, pressure
and curvature even change continuously from positive to negative values. It will be
shown below that the curvature of capillary interfaces in three-dimensional corners
changes smoothly, when the adjacent wedges become wetted.

The wetting condition applies to even more general geometries: physical liquid
surfaces in three-dimensional corners made up of three faces do exist, if for each of
the wedges (1.2) or (1.3) holds. If (1.2) holds and the three cones around the normals of
each face intersect, the meniscus forms a spherical cap. The spherical meniscus shape
is the only solution of the capillary equation known under this premise. For convex
liquid drops in such corners, the uniqueness of the spherical shape has been proven
recently (Finn & McCuan 1997). From an engineering point of view, uniqueness of
the spherical solution is likely for concave drops in corners, too. Under this premise,
it is possible to calculate analytically the volume and surface area of spherical liquid
drops in arbitrary tripods (Langbein 1995).

In the following, interfaces wetting all wedges of the respective corner will be
considered, i.e. either (1.1) or (1.4) will hold for all wedges. Furthermore and without
lack of generality, we restrict our attention to interfaces establishing identical contact
angles γi = γj = γ on all faces of the respective corner.

At large distances from the corner the liquid surface asymptotically assumes the
above-mentioned cylindrical shape. Cylindrical surfaces in different wedges connected
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by corners assume identical pressure and thus identical radii. It has been concluded
from one-dimensional modelling that the evolution of the cylindrical surface in the
wedges to the liquid volumes piled up in the corners generally follows an exponential
law (Langbein 1994). This allows the splitting of the total liquid volume in polyhedral
containers into cylindrical volumes in the wedges and surplus volumes piled up
in the corners. Unlike the analytical approach for spherical interfaces confined in
corners which is valid only for N = 3 where N is the number of wedges, the present
considerations on interfaces also wetting the adjacent wedges is valid for any N.

The aims of the present paper are (i) to determine by appropriate numerical
calculations the behaviour of a liquid meniscus extending into a wedge and to verify
the exponential law obtained analytically, (ii) to verify, whether the analytically derived
similarity solutions for liquid menisci extending from a corner into the adjacent edge
hold, (iii) to determine numerically the characteristic volumes piled up in the corners
and to analyse the curvature of the interface with respect to the contact angle when
crossing the wetting limit α + γ = π/2, (iv) to determine the range of applicability
of the volume decomposition of liquids wetting the corners and wedges of finite
polyhedral containers, and (v) to use the present results for a simplified calculation
of the mean curvature of liquid menisci in polyhedrons.

Therefore the present paper recalls in §2 a recent approach to study the shape
of liquid menisci extending from a corner into the adjacent edges, giving a more
convenient derivation of the respective equations. In §3 we confirm by numerical
simulation that the meniscus approaches its final cylindrical shape exponentially. The
decrement of this approach can be given analytically. In general, it turns out that for
constant liquid volumes the decrement assumes the order of magnitude of the inverse
mean curvature for small contact angles, slightly increases with γ and after assuming
a maximum value near to the non-wetting region tends to zero for α + γ ≈ π/2.
We show that liquid menisci with equal contact angles γ enclosing different volumes
belong to a family of similarity solutions, which are mutually related by curvature
(pressure) and the above exponent. The analytical decomposition of the total liquid
volume into cylindrically shaped portions in the wedges and surplus volumes piled up
in the corners is demonstrated in §4. In §5 we verify this decomposition by numerical
simulation and derive the corresponding scaling factors. This enables us to establish
the relation between the total liquid volume and the curvature of the meniscus for
different geometries over the whole range of angles 0 6 α+γ 6 π. The numerical data
provide a continuous extension of the analytical relations obtained for non-wetted
wedges, α + γ > π/2 (Langbein 1995), to the region of wetted wedges, α + γ < π/2.
The curvature of the meniscus changes smoothly when crossing the wetting limit of
the wedges, for interfaces having constant liquid volumes associated with the corners
as well as for interfaces enclosing constant total liquid volume. Finally the results are
applied to the calculation of liquid menisci in cubes and compared with recent fully
numerical calculations (Mittelmann 1993b) in §6.

Throughout this paper we deal with ideal static liquid surfaces only. That means that
all solid surfaces must be perfectly smooth without any scratches or contamination,
i.e. of sticking lines are considered. Additionally, no account is taken of kinetics, i.e. of
how the liquid surfaces assume their static shape. Kinetics would include the question
of the advancing contact angle, which is generally larger than the static contact angle
and due to hysteresis may lead to alternative final surfaces. The dynamic behaviour of
liquid menisci close to the critical wetting situation has been studied experimentally
in the Bubble, Drop and Particle Unit BDPU during the Spacelab mission IML-2 in
July 1994.
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Figure 1. Cross-section of a meniscus in a wedge and the coordinates used to obtain the
exponential decay of the centre meniscus height.

2. Analytical treatment of liquid surfaces not trapped in corners
Under zero-Bond-number conditions, a liquid volume is trapped in a corner made

up of N wedges, if for all wedges k equation (1.2) is valid and the cones with angle γi
around the normals of the faces i have a common region of intersection. The liquid
surface in the corner forms a spherical cap. By introducing appropriate auxiliary
sections, the dependence of curvature and surface area on the drop’s volume can be
calculated analytically (Langbein 1994, 1995).

The analytical description of the meniscus shape in the corner is no longer possible
if for any of the wedges 2αk + γi + γj is less than π. The liquid volume in the corner
penetrates into the respective wedges and approaches a cylindrical shape at infinite
distance. To examine the character of this approach, we assume that the liquid surface
is already close to the final cylindrical shape. Under this premise, the cross-section of
the surface normal to a wedge extending along the positive x-axis is roughly circular
with radius R(x)

y(x, φ) = R(x) sinφ; z(x, φ) = R(x)
(cos γ

sin α
− cosφ

)
, (2.1)

where φ is the azimuth of the circular section (Langbein 1994) and the contact angles
are assumed to be identical γi = γj = γ, see figure 1. The influence of curvature in the
wedge direction and the respective change in the maximum azimuth φ required for
maintaining the correct contact angle are neglected in this one-dimensional model.
The Gauss–Laplace formula for the centreline of the surface thus takes the form

1

R(x)
+

R′′(x)Γ 2

(1 + Γ 4R′(x)2)3/2
=

1

Rwdg

(2.2)

where

Γ =
(cos γ

sin α
− 1
)1/2

. (2.3)

Rwdg denotes the cylindrical radius in the wedge at an infinite distance from the
corner. It is the characteristic length entering the present investigation. Since we
exclude external forces, Rwdg defines the curvature at any point of the liquid surface.

Let us adopt a more straightforward solution of the Gauss–Laplace equation than
given by Langbein (1994). Integration of (2.2) after multiplication with R′(x) and



208 A. de Lazzer and D. Langbein

adjusting the integration constant to R(x) smoothly approaching Rwdg , yields

log

(
R(x)

Rwdg

)
+

1

Γ 2

(
1− 1

(1 + Γ 4R′(x)2)1/2

)
=
R(x)− Rwdg

Rwdg
. (2.4)

Solving (2.4) using a Taylor expansion for (R(x)− Rwdg )/Rwdg � 1 gives

R(x)− Rwdg

Rwdg

= c1 exp

(
− x

RwdgΓ

)
− c2

1

3
exp

(
− 2x

RwdgΓ

)
± . . . . (2.5)

Thus, under the present assumptions, the meniscus approaches its cylindrical shape at
infinity exponentially. If the length of the decrement RwdgΓ is small compared to the
length of the wedge, it is possible to split up the total liquid volume in a polyhedron
into independent contributions ascribed to the wedges and others ascribed to the
corners.
Rwdg depends mainly on the liquid volume relative to the length of the wedge and

on the contact angle γ. Γ is given by the contact angle γ and half the dihedral angle
α. It decreases monotonically from a finite value at zero contact angle towards zero in
the limiting case. From the numerical simulations presented in §5 it follows that for
fixed liquid volumes Rwdg is increasing with γ and in the product RwdgΓ counteracts
the decrease of Γ for nearly any γ except very close to α + γ = π/2. The meniscus
therefore approaches its final shape the faster, the smaller γ is, except very close to
the non-wetting situation where the decrement tends towards zero. In general, the
exponential approach becomes slower with increasing contact angle, since more and
more liquid is piled up in the corner and the meniscus height in the wedge decreases.

The exponential behaviour of the meniscus shape is of particular importance for
further considerations on the decomposition of the liquid volume: an exponential
evolution of the meniscus shape from the corner out into the wedge always leads to
a finite surplus volume over the cylindrical volume arising in an isolated wedge.

3. Liquid menisci wetting the edges of a regular tripod
The analytical considerations presented in the preceding section are valid far from

the corner and therefore are also applicable to wedges which join at the same
corner but have different dihedral angles 2αk and different contact angles γi and γj ,
γi + γj + 2αk < π.

For the numerical verification of the results obtained, let us consider liquid menisci
in regular tripods as depicted in figure 2. We denote the different angles of a regular
tripod as follows: θ1 is the polar angle between the space diagonal and the face
diagonals; θ2 is the polar angle between the space diagonal and the edges, ζ is the
angle between the face diagonals and the edges; i.e. half the angle between two
adjacent edges; and α is half the dihedral angle between adjacent faces.

These angles are closely related, see Langbein (1994). In regular N-pods each of
them fixes the other three. The Bond number is zero, i.e. no external forces act on
the liquid. The meniscus thus assumes a uniform mean curvature H . Without loss of
generality we assume equal contact angles γ on all faces of the corner. Far from the
corner the meniscus assumes the centre meniscus height zwdg . If the edge is sufficiently
long for the meniscus to approach its final cylindrical shape, the centre meniscus
height zwdg can be calculated from

zwdg = Rwdg

(cos γ

sin α
1
)

; Rwdg = − 1

2H
. (3.1)
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Figure 2. Sketch of a regular tripod N = 3 defining the angles ζ (angle between the face
diagonals and the edges), θ1 (polar angle between space diagonal and face diagonal), θ2

(polar angle between space diagonal and edge) and α (half the dihedral angle between two adjacent
faces).

Numerical calculations of the capillary surfaces arising in regular tripods have been
performed using the surface-evolver, a numerical code developed at The Geometry
Center, Minneapolis by K. Brakke (Brakke 1995). The code solves the Laplace equa-
tion starting with a given initial configuration towards the nearest minimum of the
system’s energy. In contrast to other codes that remove the contact line by applying
an augmented Laplace equation (Wong, Morris & Radke 1992a, b), contact lines are
preserved in the surface-evolver and contact angles arise due to the energy terms cos
γ on the bounding solid surfaces. The same code has been used recently to simulate a
variety of different meniscus shapes in unit cubes (Mittelmann & Hornung 1992; Mit-
telmann 1993a, b, 1995) and in complex shaped surface tension tanks (Dominick &
Tegart 1994).

For the numerical simulation of liquid menisci in tripods with different dihedral
angles 2α and contact angles, a tripod with wedges of fixed length has been used. At
the end of the wedges, a contact angle of 90◦ between the meniscus and a fictitious
endplane perpendicular to the wedge has been imposed (i.e. the meniscus was assumed
to have zero slope along the wedge).

Considering the meniscus shapes formed by identical liquid volumes with different
contact angles in a given tripod, the results of the numerical calculations show that
the centre meniscus height approaches its minimum value zwdg very fast, see figure 3.
The decay of the centre meniscus height in the wedge direction apparently follows
an exponential law rather than a power law. Furthermore the range of the decay is
considerably shorter for small contact angles, contradicting the analytical tendency
of Γ (α, γ) in (2.3).

To judge whether the decay is indeed exponential, the logarithmic slope of the
centre meniscus height log(−dz(x)/dx) is plotted in figure 4 for the rectangular tripod
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Figure 3. Numerically obtained centre meniscus height zmin versus the edge coordinate x of a
rectangular tripod for different contact angles γ of the liquid (dimensional quantities). The corner of
the tripod is located at x = 0 and the z-axis corresponds to the face-diagonal opposite to the edge.
At x = 5.0 the meniscus is forced to form contact angle 90◦ with a fictitious plane perpendicular to
the edge.

and different contact angles. Where the numerical data do not scatter†, the decay
definitely tends to become linear in the (dimensional) wedge coordinate x, confirming
the exponential behaviour. The graphs for differing contact angles also show that the
exponential behaviour develops considerably faster for small contact angles than for
large ones. This is due to the meniscus shape becoming more and more spherical
close to the corner with increasing contact angle until at α + γ = π/2 the spherical
cap is left. Furthermore, the exponential slope is steeper for contact angles close to
zero. This can be described in terms of the decrement RwdgΓ as shown in figure 5,
illuminating the influence of varying curvature on the decrement, as given in (3.1).
The increase of Rwdg with Γ for a fixed liquid volume counteracts the decrease of Γ .
Thus the dimensional decrement Rwdg assumes a finite value for zero contact angle,
increases slowly with increasing γ and assumes a maximum value rather close to
α + γ = π/2. It tends to zero for α + γ approaching π/2, since in that limiting case
the cylindrical meniscus in the wedge vanishes, whereas the spherical curvature in the
corner remains finite.

4. Similarity of liquid volumes in corners and wedges
The characteristic behaviour of the meniscus protruding from a corner into the

adjacent edges, i.e. the exponential approach to a cylindrical shape at infinite distance

† The scattering of the data points when the logarithm decreases below −6 is due to the limited
numerical accuracy: in the numerical algorithm, the first and second partial derivatives of the surface
shape have to be interpolated from the data available at the nodes of the triangular numerical mesh.
The numerical errors arising in this process limit the accuracy of the simulation. Since the iterative
scheme of the numerical program used for the present calculations is a minimization of the systems’s
energy, the contributions of surface area and volume play an important role in the calculations.
During their calculations the squared first partial derivatives of the meniscus surface have to be
added to unity. The derivatives become very small as the mensicus approaches its final cylindrical
shape and thus surface area, volumes and the forces exerted on the corresponding vertices assume
erroneous values. The triangular mesh used in the code leading necessarily to a non-uniformly
resolved interface together with the non-uniform character of the meniscus’ curvature (orthogonal
directions of finite and almost zero curvature) is likely to increase this effect. Other errors might
arise during the evaluation of the logarithmic decay using finite node to node differences at the
appropriate nodes of the mesh.
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Figure 4. Logarithmic decay of the centre meniscus height versus the edge coordinate x of a
rectangular tripod for different contact angles γ. For a discussion of the scattering of the results at
a logarithmic decay around −6 see the footnote in the text.
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Figure 5. Decrement RwdgΓ of the meniscus shape versus the contact angle γ for differing dihedral
angles 2ζ. Graphs for fixed liquid volume V = 0.1π in tripods with edge length L = 5.0.

from the corner, suggests a splitting of the total liquid volume into independent
portions ascribed to the corners and the wedges (Langbein 1995). The liquid volume
can be considered as consisting of portions with cylindrical shape of radius Rwdg

filling the entire length L of the wedges, thus presenting cylindrical subvolumes. To
them one has to add the volume piled up in the corner. Since the meniscus approaches
the cylindrical shape in the wedge exponentially, the liquid portion associated with
the corner is finite even at infinite wedge length. Therefore, presuming that the filling
level is not too large, by cutting off the wedge at a finite distance from the corner
only exponentially small errors are introduced. Negligible curvature and slope along
the wedge at the wedge end considered is required.

Since the corner volume scales with the third power of the radius Rwdg of curvature,
whereas the liquid volume in the wedges is proportional to the length of the wedges
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Figure 6. Sketch of two out of the three cylindrical menisci meeting in a rectangular tripod. The
intersections of the liquid surfaces result in a reduction of the liquid volumes ascribed to the wedges.

and to the cross-section, a relation

V = NLVwdgR
2
wdg −NVbscR

3
wdg + VcrnR

3
wdg (4.1)

holds. Here, V denotes the total liquid volume, N the number of wedges forming
the N-pod, Vwdg the specific volume ascribed to the wedge, Vcrn the specific liquid
volume associated with the corner and Vbsc an auxiliary term taking into account
the intersection of adjacent liquid volumes Vwdg in the corner; Vwdg , Vbsc and Vcrn

are defined geometrically. Vwdg can be calculated directly from the cross-section of a
cylindrical meniscus in a wedge, yielding for equal contact angles γ

Vwdg =
cos γ cos(α+ γ)

sin α
− =

(π
2
− α− γ

)
. (4.2)

To obtain Vbsc , the cylindrical volumes in the wedges have to be bisected near the
corner along the middle planes with the partner wedges. Figure 6 depicts two out of
the three cylindrical liquid volumes meeting in the corner of a rectangular tripod; the
edge towards the viewer is cut-out and the columns are slightly pulled apart. This
yields

Vbsc = cot ζ

[
1

3

cos γ cos2(α+ γ)

sin2 α
+

1

3

cos2 γ cos(α) cos(α+ γ)

sin2 α
+

2

3
(cos γ − sin α)

−
(π

2
− α− γ

)
cos γ cot α

]
. (4.3)

In contrast to the specific wedge volume Vwdg and the specific bisection volume
Vbsc , the specific corner volume Vcrn cannot be obtained analytically but has to be
determined by appropriate numerical simulation.

We should point out that the specific quantities introduced (Vwdg , Vbsc and Vcrn)
have dimension volume per length times area and volume per length3. Therefore,
although they have been introduced as specific ‘volumes’, they are in fact dimensionless
quantities characterizing the meniscus properties in a given geometry.

Equation (4.1) gives the essential similarity relation between the liquid volumes
accumulated in a corner and in the adjacent wedges and the curvature of the meniscus.
It allows the mean curvature of menisci in corners to be calculated provided that the
distortion of the cylindrical meniscus in the wedge by the corner is negligible at the
wedge ends. Validity of the similarity relation requires that the meniscus distortion in
the corner is integrable and finite. Too large liquid volumes violate (4.1).
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Figure 7. V/R2
wdg versus the meniscus curvature obtained by numerical simulation for different

liquid volumes with contact angle γ = 35◦ in a rectangular tripod. Rwdg denotes the dimensional
curvature of the cylindrical section of the meniscus far away from the corner and H is the mean
curvature of the meniscus. Open squares denote the numerical results for relative liquid volumes
V/Vmin = 1, 2, 4, 8, 16, 24, 32, 40, 60, 80; the solid line gives the corresponding linear fit ending for
Rwdg = 0 at 3LVwdg (solid dot).

In the following section, (4.1) will be verified numerically for the limit of small
liquid volumes.

5. The curvature of liquid volumes in regular N -pods
5.1. Numerical verification of the decomposition of the liquid volume

For convenient checking of the similarity relation (4.1) numerically, we divide it by
R2

wdg yielding

V

R2
wdg

= NLVwdg + (Vcrn −NVbsc)Rwdg . (5.1)

For a series of numerical simulations with different liquid volumes, a graph of (5.1)
is given in figure 7. V/R2

wdg clearly shows a linear dependence on Rwdg over a volume
range of nearly two decades with respect to a suitably chosen minimum liquid volume
Vmin (here, Vmin = 0.0025πL). The graph strongly confirms the present approach, since
the linear relation holds in the case of the largest liquid volume in spite of significant
axial curvature of the meniscus near the wedge end.

The linear behaviour of the numerical results confirms the existence of a specific
coefficient (Vcrn − NVbsc) represented by the slope of the graph in figure 7, which
does not depend on the total liquid volume. Since Vbsc does not depend on the liquid
volume either, Vcrn must behave likewise and can be calculated from the numerical
results using (3.1) and (4.1)–(4.3).

The expected analytical relation between the decay of the centre meniscus height
and the radius of the cylindrical meniscus far from the corner is given by (2.5).
Normalization of the axial coordinate x along the wedge with the decrement RwdgΓ
gives

x∗ =
x

RwdgΓ
=

x

Rwdg

(
sin α

cos γ − sin α

)1/2

. (5.2)

This transformation fits the different meniscus shapes corresponding to figure 7 to a
single graph as shown in figure 8 in terms of the logarithmic slope and thus confirms
the scale factor of the similarity solutions. Since the slope of the normalized graphs
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Figure 8. Logarithmic decay of the centre meniscus heights versus the normalized axial coordinate
of the edge. The normalization proves that the graphs for different liquid volumes (V/Vmin = 1, 2,
4, 8, 16, 24, 32, 60) belong to a family of similarity solutions, the parameter of which is the given
scale factor. The slopes of the graphs tend towards −1 (dashed line) for large axial coordinates as
predicted by analysis.

given in figure 8 approaches the value of −1 (as represented by the dashed line) for
large dimensionless extensions of the wedge x∗, these results confirm the analytical
relation (2.5) for the first-order term of the centre meniscus height. Thus the analytical
result yields the scale factor of the meniscus shapes for different liquid volumes and
the correct exponent of evolution of the cylindrical meniscus in the wedge as well.
The meniscus thereby assumes the predicted exponential behaviour at a dimensionless
distance of about 6. The tails of the corner volumes can be considered exponential, if
the length of the edge exceeds the decrement RwdgΓ by about one order of magnitude.

5.2. Mean curvature of liquid menisci in tripods with wetted edges

As discussed in §3, analytical relations for the dependence of the liquid volume
on the opening angles of N-pods and the contact angle exist, if the edges are not
wetted. Based on the previous results we are now able to give equivalent numerical
results for wetted edges. Following the procedure of Langbein (1994), the results
will be presented for unit liquid volumes associated with the corners, thus yielding
dimensional curvatures.

The mean curvatures for given liquid volumes, corners and wedges are obtained by
numerical calculation of the liquid meniscus in the corresponding N-pod. From the
numerical results Vcrn is derived as described in §5.1; the results for different dihedral
angles are given in figure 9. It is important to note that, for γ approaching zero, the
graphs for Vcrn assume zero slope for each dihedral angle of the tripod.

To obtain the radius of mean curvature for a unit volume associated with the
corner,

VcrnR
3
wdg = 1 (5.3)

has to be solved for 1/Rwdg = −2H . Figure 10 shows twice the mean curvature 2H for
various tripods and contact angles γ including wetted wedges as well as non-wetted
ones. Since the meniscus assumes a concave shape, the mean curvature has been given
a negative sign. It is obvious that the results for α+γ < π/2 obtained by the numerical
approach provide a continuous extension of the analytical results for α + γ > π/2,
although the interface configuration behaves discontinuously.

It is important to note that for all angles 2ζ of the edges the curvature approaches
its value for the contact angle γ = 0 with zero slope as is anticipated by the behaviour
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Figure 9. Numerically obtained specific corner volumes Vcrn for regular tripods with dihedral
angles 2ζ versus the contact angle γ.
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Figure 10. Twice the mean curvature 2H of a drop with unit corner volume in regular tripods
of dihedral angles 2ζ versus the contact angle γ of the liquid. The numerical simulations yield a
continuous extension of the analytic results for α+ γ > π/2 (Langbein 1994, 1995) into the region
of α+ γ < π/2.

of Vcrn as given in figure 9. This strengthens the theoretical approach (4.1), since for
Vwdg and Vbsc we have

lim
γ→0

∂Vwdg

∂γ
= 0 and lim

γ→0

∂Vbsc

∂γ
= 0 (5.4)

and the exponent of the exponential decay assumes zero slope, too:

lim
γ→0

∂

∂γ

(
− x

RwdgΓ

)
= lim

γ→0

x

2Rwdg

Γ−3 sin γ

sin α
= 0. (5.5)

Since all relevant analytic parameters approach γ = 0 with zero slope as well as the
numerically derived specific corner volumes, the calculated curvature of the meniscus
must behave likewise.

With figure 10 we have shown that the mean curvature for capillary interfaces of
unit corner volume (i.e. for α+γ > π/2 for liquid drops of unit volume and α+γ < π/2
for unit volumes associated with the corners) changes continuously when the wetting
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Figure 11. Twice the mean curvature 2H of a drop with unit total volume in regular tripods
of dihedral angles 2ζ versus the contact angle γ of the liquid: graphs for wedge lengths of 5
units (open symbols) and 10 units (shaded symbols). Although the shapes of the interface change
discontinuously when the wedges become wetted, the curvature changes continuously.

limit of the wedges is reached. An important result of the present considerations is
that the same behaviour can be observed when the total liquid volume is considered.
In this case the influence of the length of the wedges taken into account cannot be
neglected, since for constant total volume the radius of curvature of the interface will
vanish (the curvature thus will diverge) when the length of the wedges tends towards
infinity. Once more, interfaces of unit volume – this time of unit total volume – will be
considered. The radius of curvature of the interface thus can be obtained by solving

(Vcrn −NVbsc)R
3
wdg +NLVwdgR

2
wdg = 1 (5.6)

for Rwdg . The corresponding mean curvature for the interfaces of unit total volume
in regular tripods are plotted in figure 11. For α + γ > π/2, the graphs naturally
coincide with those from figure 10. For α + γ < π/2 open and shaded symbols
denote wedges extending 5 units and 10 units, respectively. The graphs show that
also in terms of the total liquid volume the curvature of the interface smoothly passes
the wetting limit of the wedges, although the characteristic shape of the interface
shows a discontinuous behaviour. This emerges from the characteristic behaviour
of the specific wedge volume Vwdg , which approaches zero with zero slope when
α+ γ approaches π/2. Likewise the liquid volume associated with the wedge vanishes,
overcoming the influence of the length of the wedge (which might even be infinite)
allowing a finite radius of curvature of the interface to be formed. The difference
between the behaviour of the mathematical problem (discontinuous) and the curvature
of the respective interfaces (continuous) is of basic physical interest: since physical
surfaces show a smooth behaviour when wetting conditions are changed, the pressure
within the liquid likewise varies smoothly.

5.3. Menisci in wedges joining neighbouring corners

The previous considerations have been based on the assumption that the dimensionless
extent of the wedge L/RwdgΓ considerably exceeds unity. The boundary condition
set at the end of the wedges was zero slope of the meniscus along the wedge. No
meniscus deformation at this far end of the wedge has been considered, although
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wedges of finite length L naturally connect corners with differing geometry, but often
with equal wetting conditions. For what follows let us recall that the one-dimensional
model according to (2.2) accounts for the axial curvature simply by adapting the
radius R(x), i.e. the radius or curvature perpendicular to the wedge.

The range of applicability of the similarity solutions nevertheless allows for a certain
overlap of volumes in opposite corners. If a wedge joining two corners is sufficiently
long, the meniscus arising is approximately the underlying wedge meniscus plus a
linear superposition of the two corner volumes extending out into the wedge. The
one-dimensional model yields a favourable compensation of errors when the liquid
volumes ascribed to opposite corners are cut-off in the middle of wedges. Let us
mention in this context the additivity of curvatures and slopes: the curvatures add
up, whereas the slopes cancel due to their opposite sign.

The similarity solution stays valid as long as the meniscus shape in the middle
of the wedge is well within the regime of exponential decrease and the slopes of
the isolated corner volumes are sufficiently small not to violate the one-dimensional
approach of (2.2). The similarity solution breaks down when the isolated slopes of the
corner volumes in the middle of the wedge cease to follow the exponential decrease.
In this case, the influence of the liquid volumes in the tails of the corner volumes
on the overall curvature do not mutually cancel any more and the contact angle
boundary condition has a relevant influence on the meniscus shape. Both effects
change the overall meniscus curvature of the respective opposite corner volume, thus
the similarity solution lacks validity.

6. The applicability of the present approach
To check the applicability of the present approach, the numerical calculations by

Mittelmann (1993b) on the meniscus of a liquid with contact angle γ = 40◦ in a unit
cube are compared with the present results. To this end (4.1) is adapted to a unit
cube. The wedges of the cube are divided into two halves, each being associated with
the adjacent corner. Now on applying (4.1) to each of the eight corners, the total
liquid volume within the cube is obtained. An equivalent procedure can be applied to
any polyhedral container.

Building the unit cube from eight rectangular tripods N = 3 with the length
L = 1/2 and using

2H =
∆p

σ
= − 1

Rwdg

(6.1)

one obtains from (4.1)

V = 8

{
NLVwdg

1

|2H |2 −NVbsc

1

|2H |3 + Vcrn

1

|2H |3

}
. (6.2)

Vwdg can be calculated according to (4.2), Vbsc from (4.3) and Vcrn results from
numerical simulation as summarized in figure 9; the mean curvature H of the concave
meniscus is assumed to have negative sign. The result is given in figure 12 in terms
of (5.1), depicting the dependence of twice the mean curvature, 2H , squared times the
liquid volume on the radius of curvature −1/(2H) for both approaches. For radii of
curvature up to about 0.33 and liquid volumes up to 0.1 (i.e. up to a filling level of
10%), the results obtained by the present approach fit Mittelmann’s calculations with
a maximum deviation of the mean curvature 2H of ε < 4% with respect to a given
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Mittelmann (1993b)
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spherical interface
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Figure 12. Comparison of V (2H)2 obtained by the present approach using (5.1) and by numerical
calculations (Mittelmann 1993b) versus the inverse mean curvature considering a liquid meniscus
wetting the edges (γ = 40◦) of a unit cube.

liquid volume. At radii of curvature below 0.27 the maximum deviation diminishes
by one order of magnitude, ε < 0.4%.

This agreement is better than expected, since the sum a+g is rather large but not
very close to π/2, and thus the decrement RwdgΓ of the corner menisci is close to its
maximum value (compare figure 5). Furthermore it has to be taken into account that
the meniscus for V = 0.1 is almost spherical, i.e. it does not fulfil the requirements of
RwdgΓ � L and the axial curvature of the meniscus at the end of the wedge being
negligible.

Furthermore, figure 12 shows that no contributions of order 1/(2H)4 arise in (4.1).
This once more confirms the exponential evolution of the meniscus shape. If in
the middle of the wedges the fading out of the corner menisci fails to follow the
exponential behaviour, significant and exponentially growing deviations from (4.1)
and (5.1) arise.

On the other hand, Mittelmann’s results are obtained numerically, too. To judge
their reliability we consider the particular situation when the liquid surface in a cube
assumes a spherical shape. In this particular configuration we obtain

Rsph cos γ = 1
2
; 2H = −4 cos γ ≈ −3.064178 (6.3)

and

V = 1− 4π

3
R3

sph + 6πR3
sph

(
2
3
− cos γ + 1

3
cos3 γ

)
≈ 0.099756. (6.4)

This proves Mittelmann’s result to agree well with the exact value. With the present
method yielding an error of ε < 4% for the spherical meniscus, it can be applied for
rather high filling levels, as a view of the resulting meniscus shape (figure 13) clearly
shows. The corner meniscus has not faded away at half the length of the wedges,
neither is the axial curvature of the meniscus negligible there. In view of the fact that
it considers isolated corners with half the adjacent wedges, the error involved in the
present approach is strikingly small even in the case of the spherical meniscus.

This strengthens the validation of the superposition of the menisci arising in a
wedge joining two corners of similar wetting conditions. In the case of the spherical
meniscus with contact angle γ = 40◦ in the unit cube, we obtain for the decrement
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Figure 13. Almost spherical meniscus in the unit cube associated to a normalized liquid volume of
0.1, i.e. a filling level of 10%. With the present approach, the mean curvature of this configuration
can be determined with an error level below 4%. Thus, the present approach, although based on
the assumption that the corner volumes have largely faded away at the end of the wedge, obviously
is valid up to comparatively large amounts of liquid and to comparatively small extents of the
wedges.

RwdgΓ of the corner meniscus as

RwdgΓ =
1

4 cos γ

(cos γ

sin α
− 1
)1/2

≈ 0.09422. (6.5)

This is about one fifth of the length L of the wedge attributed to each of the corners.
Comparing with the logarithmic slope of the interface as depicted in figure 8 (which,
of course, is for a slightly smaller contact angle γ = 35◦), this coincides well with
the minimum wedge length required for the slope of the interface to begin to follow
the exponential behaviour. The range of applicability of the similarity solutions to
menisci in wedges joining corners thus extends to decrements RwdgΓ about one order
of magnitude lower than the wedge length.

7. Conclusions and prospects
The free liquid surface arising in a corner when the fluid wets the adjacent wedges

exhibits an exponential decay from the corner to the wedge. The exponential scaling
between different volumes is given analytically. Numerical simulations confirm the
exponential behaviour and show that far from the corner the logarithm of the
normalized slope of the centre meniscus height is in accordance with the analytical
results. The analytical scaling correctly describes the meniscus slope far from the
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corner and also gives the scaling between the meniscus shapes arising for different
liquid volumes.

The present results show that in the case of wetted wedges a similarity relation
between the mean curvature of the meniscus and the geometric situation is valid in
the limit of sufficiently small liquid volumes. The similarity solution is based on a de-
composition of the liquid volume into portions associated with the corner, the wedges
and the intersection of the wedge volumes at the corner. The subvolumes are char-
acterized by specific dimensionless quantities depending merely on corner geometry
and boundary data. Although the specific corner volumes cannot be obtained without
numerical effort, the present approach has the advantage that for a given geometry
the characteristic corner volume has to be determined only once. For determination of
specific parameters of an interface configuration, like the dependence of curvature on
volume, the present technique thus effectively serves to replace numerical simulation
in the limit of small volumes and likewise allows very convenient calculations of the
pressure or the mean curvature of menisci in arrays of wedges and corners.

An important result of the present investigations is that the curvature of an interface
in a corner changes smoothly when crossing the wetting limit of the adjacent wedges,
although the mathematical problem represents a discontinuity. Thus technical fluids
initially confined within a corner show a smooth change in pressure/curvature even
if finally the wedges become wetted when wetting conditions change, e.g. due to
chemical processes within the fluid or the wall (surface ageing), due to electrical fields
or due to the addition of surfactants.

The present approach can be extended to more general polyhedral configurations
than the examples given above without major numerical effort. It can be applied
to any scarcely filled closed container or capillary, thereby significantly extending
existing relations on shape, curvature and volume of liquid menisci in long capillaries.
Furthermore it allows modelling of foams or porous structures as coupled clusters
of polyhedrons filled with low liquid volumes. Within the cluster, all coupled menisci
have identical internal pressure, independent of the contact angle. Concerning porous
media, a simulation of materials consisting of pores of different shapes and volumes
becomes possible.
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was supported by the Deutsche Agentur für Raumfahrtangelegenheiten, DARA,
under contract number 50 WM 9432.

REFERENCES
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Pötschke, J. 1980 Die unberuhigte Erstarrung von Aluminium, Silber, Kupfer und Stahl. Z. Phys.
Chem. Neue Folge 123, 199–218.

Princen, H. M. 1969a Capillary phenomena in assemblies of parallel cylinders I: Capillary rise
between two cylinders. J. Colloid Interface Sci. 30, 69–75.

Princen, H. M. 1969b Capillary phenomena in assemblies of parallel cylinders II: Capillary rise in
systems with more than two cylinders. J. Colloid Interface Sci. 30, 259–371.

Princen, H. M. 1970 Capillary phenomena in assemblies of parallel cylinders III: Liquid columns
between horizontal parallel cylinders. J. Colloid Interface Sci. 34, 171–184.

Volmer, M. 1939 Kinetik der Phasenbildung. In Die Chemische Reaktion Band IV (ed. K.F. Bon-
hoeffer), pp. 1–220. Theodor Steinkopff, Leipzig.

Wong, H., Morris, S. & Radtke, C. J. 1992a Two-dimensional menisci in nonaxissymmetric
capillaries. J. Colloid Interface Sci. 148, 284–287.

Wong, H., Morris, S. & Radtke, C. J. 1992b Three-dimensional menisci in polygonal capillaries.
J. Colloid Interface Sci. 148, 317–336.


